The Drosophila L1CAM homolog Neuroglian signals through distinct pathways to control different aspects of mushroom body axon development.

نویسندگان

  • Tim Goossens
  • Yuan Y Kang
  • Gunther Wuytens
  • Pascale Zimmermann
  • Zsuzsanna Callaerts-Végh
  • Giulia Pollarolo
  • Rafique Islam
  • Michael Hortsch
  • Patrick Callaerts
چکیده

The spatiotemporal integration of adhesion and signaling during neuritogenesis is an important prerequisite for the establishment of neuronal networks in the developing brain. In this study, we describe the role of the L1-type CAM Neuroglian protein (NRG) in different steps of Drosophila mushroom body (MB) neuron axonogenesis. Selective axon bundling in the peduncle requires both the extracellular and the intracellular domain of NRG. We uncover a novel role for the ZO-1 homolog Polychaetoid (PYD) in axon branching and in sister branch outgrowth and guidance downstream of the neuron-specific isoform NRG-180. Furthermore, genetic analyses show that the role of NRG in different aspects of MB axonal development not only involves PYD, but also TRIO, SEMA-1A and RAC1.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

L1CAM/Neuroglian controls the axon–axon interactions establishing layered and lobular mushroom body architecture

The establishment of neuronal circuits depends on the guidance of axons both along and in between axonal populations of different identity; however, the molecular principles controlling axon-axon interactions in vivo remain largely elusive. We demonstrate that the Drosophila melanogaster L1CAM homologue Neuroglian mediates adhesion between functionally distinct mushroom body axon populations to...

متن کامل

Differential Effects of Human L1CAM Mutations on Complementing Guidance and Synaptic Defects in Drosophila melanogaster

A large number of different pathological L1CAM mutations have been identified that result in a broad spectrum of neurological and non-neurological phenotypes. While many of these mutations have been characterized for their effects on homophilic and heterophilic interactions, as well as expression levels in vitro, there are only few studies on their biological consequences in vivo. The single L1...

متن کامل

TGF-beta signals regulate axonal development through distinct Smad-independent mechanisms.

Proper nerve connections form when growing axons terminate at the correct postsynaptic target. Here I show that Transforming growth factor beta (TGFbeta) signals regulate axon growth. In most contexts, TGFbeta signals are tightly linked to Smad transcriptional activity. Although known to exist, how Smad-independent pathways mediate TGFbeta responses in vivo is unclear. In Drosophila mushroom bo...

متن کامل

Signal strength and signal duration define two distinct aspects of JNK-regulated axon stability

Signaling proteins often control multiple aspects of cell morphogenesis. Yet the mechanisms that govern their pleiotropic behavior are often unclear. Here we show activity levels and timing mechanisms determine distinct aspects of Jun N-terminal kinase (JNK) pathway dependent axonal morphogenesis in Drosophila mushroom body (MB) neurons. In the complete absence of Drosophila JNK (Basket), MB ax...

متن کامل

Axon Branch-Specific Semaphorin-1a Signaling in Drosophila Mushroom Body Development

Correct wiring of the mushroom body (MB) neuropil in the Drosophila brain involves appropriate positioning of different axonal lobes, as well as the sister branches that develop from individual axons. This positioning requires the integration of various guidance cues provided by different cell types, which help the axons find their final positions within the neuropil. Semaphorins are well-known...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Development

دوره 138 8  شماره 

صفحات  -

تاریخ انتشار 2011